Compact covers and *l*-equivalence by Manuel López Pellicer

For a Tychonoff space X, we denote by $C_p(X)$ and $C_c(X)$ the space of continuous real-valued functions on X equipped with the topology of pointwise convergence and the compact-open topology, respectively.

Recall that Nagata's theorem states that if the topological rings $C_p(X)$ and $C_p(Y)$ are topologically isomorphic, then X and Y are homeomorphic. From this result follows that two spaces X and Y are said to be *t*-equivalent $(\ell_p$ -equivalent) [ℓ_c -equivalent] if the spaces $C_p(X)$ and $C_p(Y)$ are homeomorphic (linearly homeomorphic) [$C_c(X)$ and $C_c(Y)$ are linearly homeomorphic]. Also we say that a topological property \mathcal{P} is preserved by *t*-equivalence (ℓ_p equivalence) [ℓ_c -equivalence] if whenever two spaces X and Y are *t*-equivalent (ℓ_p -equivalent) [ℓ_c -equivalent] and X has the property \mathcal{P} , Y has the property \mathcal{P} too.

The natural question asking What topological properties are preserved by the relations of t-equivalence, ℓ_p -equivalence or ℓ_c -equivalence? comes from Arkhangel'skii problem asking if a first countable space Y which is ℓ_p -equivalent to a metrizable space X must also be metrizable. J. Baars, J. de Groot and J. Pelant proved that complete metrizability is preserved by ℓ_p -equivalence in the class of metrizable spaces. They also gave an alternative proof for separable metrizable spaces by using Christensen's Theorem (A metrizable space X is Polish if and only if X admits a compact resolution swallowing compact sets). Therefore: The property of being a completely metrizable space is preserved by the ℓ_p -equivalence for spaces satisfying the first axiom of countability. Later on, Valov proved that the answer to the Arhangel'skii's problem is positive for Čech-complete spaces Y.

We will present the preservation of complete metrizability by ℓ_c -equivalence. Our proof of the preservation of complete metrizability in the case of ℓ_c -equivalent spaces X and Y, where X is Polish and Y is first-countable follows from the existence of a quotient linear map from $C_c(X)$ onto $C_c(Y)$. The non-separable case is an open problem. Our approach uses a property of $C_c(X)$ which is preserved by linear open maps and characterizes spaces X with a compact resolution swallowing compact sets.

Other properties preserved by ℓ_c -equivalent will be considered and also other questions related with ℓ_p -equivalence will be presented. For instance, a new characterization of the Lindelöf Σ -property of X in terms of $C_p(X)$, enables extend some Okunev's results by showing that if there exists a surjection from $C_p(X)$ onto $C_p(Y)$ (respectively from $L_p(X)$ onto $L_p(Y)$) that takes bounded sequences to bounded sequences, then vY is a Lindelöf Σ -space (respectively K-analytic) if vX has this property.

Basic references

 J. Kakol, W. Kubis and M. López-Pellicer, *Descriptive topology in Selected Topics of Functional Analysis*, Developments in Mathematics 24, Springer, New York, Dordrecht, Heidelberg, London, 2011.

- 2. J. Kakol, M. López-Pellicer, O. Okunev, *Compact cover and Function Spaces*, submitted.
- O. Okunev, A relation between spaces implied by t-equivalence, Topology Appl. 158 (2011) 2158-2164.